Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrzej Kochel

Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland

Correspondence e-mail:
andrzej@wchuwr.chem.uni.wroc.pl

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.036$
$w R$ factor $=0.079$
Data-to-parameter ratio $=38.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-(4-Pyridyl)pyridinium triiodide

The title compound, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{I}_{3}{ }^{-}$, contains monoprotonated $4,4^{\prime}$-bipyridinium cations and triiodide anions. The cations assemble into infinite chains by way of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

We are presently interested in the syntheses and structures of dioxorhenium(V) halide salts (Kochel, 2006). The title compound, (I) (Fig. 1), arose as an unexpected product in this system. The asymmetric unit contains a monoprotonated $4,4^{\prime}-$ bipirydinium cation and an $\mathrm{I}_{3}{ }^{-}$triiodide anion. The geometry of the $\mathrm{I}_{3}{ }^{-}$species (Table 1) is normal (Wieczorrek, 2000). The closest contact beteen I atoms in different anions is 3.8880 (6) \AA for $\mathrm{I} 2 \cdots \mathrm{I} 3^{\mathrm{i}}$ [symmetry code: (i) $x, y-1, z$]; this is $0.07 \AA$ shorter than the van der Waals contact distance of $3.96 \AA$ for two I atoms (Bondi, 1964). The dihedral angle between the aromatic rings in the cation is $33.5(3)^{\circ}$.

(I)

The molecular packing in (I) can be characterized by a layer system (Fig. 2), in which layers of $\mathrm{I}_{3}{ }^{-}$anions alternate with sheets of 4,4'-bipyridinium cations, the sheets being parallel to ($h k l$) and stacked in the [100] direction. Within the organic sheets, an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}^{\mathrm{i}}$ hydrogen bond links adjacent $4,4^{\prime}-$ bipyridinium cations into infinite chains [$\mathrm{N} 1-\mathrm{H} 1 A=0.99 \AA$, $\mathrm{H} 1 A \cdots \mathrm{~N} 2^{\mathrm{I}}=1.64 \AA, \mathrm{~N} 1 \cdots \mathrm{~N} 2^{\mathrm{I}}=2.622(6) \AA$ and $\mathrm{N} 1-$ $\mathrm{H} 1 A \cdots \mathrm{~N} 2^{\mathrm{I}}=174^{\circ}$; symmetry code: (i) $\left.x,-1+y, z\right]$.

Experimental

A mixture of $0.36 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ReI}_{6}$ (Watt \& Thompson, 1963), 4,4'bipyridine $(0.40 \mathrm{~g})$ and a solution of 1 ml of HI in 50 ml of water was stirred for 5 h at a temperature of 320 K . The color of the reaction mixture changed from dark violet-red to yellow-brown. After reaction, the mixture was cooled and finally two types of crystals were
obtained, yellow plates of $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{ReO}_{4}^{-}$and yellow-brown prisms of the title compound. X-ray quality crystals of (I) were obtained by recrystallization of the selected crude product from an aqueous solution at room temperature.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{I}_{3}{ }^{-}$
$M_{r}=537.89$
Triclinic, $P \overline{1}$
$a=8.8399$ (9) \AA
$b=9.6529$ (8) \AA
$c=9.7154$ (7) \AA
$\alpha=107.743$ (7) ${ }^{\circ}$
$\beta=104.709(7)^{\circ}$
$\gamma=110.791(8)^{\circ}$

$$
\begin{aligned}
& V=674.38(13) \AA^{3} \\
& Z=2 \\
& D_{x}=2.649 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } \mathrm{K} \mathrm{\alpha} \mathrm{radiation}^{-1} \\
& \mu=6.93 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Prism, yellow-brown } \\
& 0.12 \times 0.06 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

Data collection

Kuma KM-4-CCD diffractometer ω scans
Absorption correction: numerical
(CrysAlis RED; Oxford
Diffraction, 2003)
$T_{\text {min }}=0.490, T_{\text {max }}=0.681$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.079$
$S=0.92$
5192 reflections
136 parameters

Figure 1
The asymmetric unit of (I), showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).

Figure 2
The packing of (I).

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-449.
Bruker (1999). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Kochel, A. (2006). Acta Cryst. E62, m1740-m1742.
Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Watt, G. W. \& Thompson, R. J. (1963). Inorg. Synth. 7, 190-192.
Wieczorrek, C. (2000). Acta Cryst. C56, 1079-1081.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

